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inhaler actuation was found to have a strong effect on the particle morphology, with solid 
spheroidal particles produced in dry air and highly porous particles produced at higher humidity 
levels. Air humidification was found to have no effect on the solid phase of the drug particles, 
which was predominantly amorphous for all tested formulations.  A critical level of air relative 
humidity was required to generate porous particles for each tested formulation.  This critical 
relative humidity was found to depend on the amount of ethanol used in the inhaler, but not on 
the type of propellant utilized.  The results indicate that under the right circumstances water 
vapor saturation followed by nucleated water condensation or ice deposition occurs during 
particle formation from evaporating propellant-cosolvent-BDP droplets.  This finding reveals the 
importance of condensed water or ice as a templating agent for porosity when particle formation 
occurs at saturated conditions, with possible implications on the pharmacokinetics of solution 
pMDIs and potential applications in particle engineering for drug delivery. 

2. Introduction 

Inhaled corticosteroids are widely prescribed for prophylactic asthma therapy (Busse, 2002) 
and may also benefit patients with moderate to severe chronic obstructive pulmonary disease 
(Gartlehner et al., 2006).   A large proportion of inhaled corticosteroid doses are delivered using 
pressurized metered dose inhalers (pMDIs) (Lechuga-Ballesteros et al., 2011; Roche and 
Dekhuijzen, 2016).  In modern pMDIs, the drug is either suspended or dissolved in a volatile 
hydrofluoroalkane (HFA) propellant, with the choice dependent on the solubility of the drug in 
the propellant (Myrdal et al., 2014); the inhaled corticosteroid beclomethasone dipropionate 
(BDP) has generally been formulated as a solution (Spahn, 2016) utilizing ethanol as a co-
solvent (Gupta et al., 2003).  The resulting formulation is contained in a pressurized canister 
equipped with a metering valve and paired with an actuator (Stein et al., 2014).  When a patient 
administers a dose from a pMDI, the volatile formulation exits the valve via the actuator and is 
atomized into a fine, rapidly evaporating spray which is inhaled into the patient’s lungs (Finlay, 
2011). 

The aerodynamic particle size distribution of a therapeutic aerosol has a large effect on the 
efficacy of treatment in pulmonary delivery because of its prominent role in the physical 
mechanisms of particle deposition in the human airways (Darquenne, 2012).  Consequently, a 
substantial amount of research on pMDIs has focused on measurement and prediction of the drug 
particle size distribution for solution and suspension formulations.  The matter is complicated by 
the highly dynamic nature of the aerosol generated by pMDIs: as the spray of propellant droplets 
interacts with the surrounding gas phase, heat, mass, and momentum are transferred (Xu and 
Hickey, 2014), and thus the velocity, size, and concentration of droplets vary in time and space 
(Dunbar et al., 1997).  Available theory (Finlay, 2001) suggests that the formulation (propellant 
physical properties, inclusion of co-solvent) and usage environment (air temperature, relative 
humidity) have the potential to alter these spray dynamics and therefore the deposition in human 
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airways.  Indeed, in vitro studies summarized in our recent review (Ivey et al., 2015) have 
demonstrated all of these effects.   

As the interaction of pMDI-generated aerosols with humidity is of particular relevance to 
the present study, a brief survey of research on this topic is merited.  Evaporative cooling in 
pMDI spray plumes can produce temperatures well below 0 °C (Brambilla et al., 2011), and the 
plume may contain as many as hundreds of millions of microparticles (Stein, 2008).  If the air 
entrained into the pMDI spray plume is sufficiently humid, these conditions might produce 
supersaturation of water vapor and subsequent nucleated condensation of water (Hinds, 1999).  
An early evaluation of the effect of humidity on the aerodynamic particle size distribution of 
nine commercial chlorofluorocarbon pMDIs was conducted by Kim et al. (Kim et al., 1985).  
Testing was conducted with air conditioned to 22-23 °C and either < 1% or 90% relative 
humidity (RH).  A 20 liter evaporation chamber was employed upstream of an Andersen cascade 
impactor to measure the aerodynamic particle size distribution of the fully evaporated aerosols. 
No significant effect of RH on the aerodynamic particle size distribution for eight of the nine 
tested inhaler types was observed when the RH was increased from near zero to 90%, and thus it 
was concluded that for the tested pMDIs humidity did not alter the particle size distribution of 
the aerosol reaching the impactor.  In a later study, Lange and Finlay administered doses from an 
HFA-propelled suspension pMDI to a model ventilation circuit equipped with a pediatric 
endotracheal tube coupled to an Andersen cascade impactor (Lange and Finlay, 2000).  
Ventilation air was supplied at 4.8 L/min with a square wave profile.  Ventilation air temperature 
was varied from 25 °C to 37 °C, and was either unhumidified ( RH 8-15%) or humidified to near 
saturation (RH 	100%). The in vitro inhaled dose was observed to depend heavily on the 
amount of water vapor present in the ventilation air (i.e. the absolute humidity), with the inhaled 
dose decreasing as the water vapor mole fraction increased.  Importantly, Lange and Finlay 
observed that the aerodynamic particle size distribution of the aerosol passing the endotracheal 
tube was unaffected by changes in air humidity and that the deleterious effect of humidity on the 
in vitro inhaled dose was mitigated when a spacing device was added to the ventilation circuit 
prior to the endotracheal tube and impactor.  This data suggests that humidity could affect 
particle sizes in the spacer immediately after droplet production.  In a subsequent study designed 
to further examine the effect of humidity, Martin et al. examined the evaporation rate of 
millimeter size pendant propellant-ethanol droplets in air with varying humidity levels (Martin et 
al., 2005).  They found no effect of air humidity on droplet evaporation rates. 

Evidence that humidity can alter the aerodynamic particle size distribution from pMDIs was 
published by Mitchell and colleagues, who utilized an Andersen cascade impactor with an 
endotracheal tube fixed to the inlet to evaluate the effect of air humidity on the aerodynamic 
particle size distribution of BDP solution pMDIs paired with valved holding chambers (Mitchell 
et al., 2003).  They found that increasing the absolute humidity of the testing air resulted in a 
large increase in the mass median aerodynamic diameter (MMAD) for an HFA BDP pMDI and 
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concluded that the effect was due to growth by condensation of the aerosol particles generated by 
the inhaler. Martin and Finlay sized salbutamol sulfate suspension pMDIs actuated into valved 
holding chambers in 37 °C air using an Andersen cascade impactor; to evaluate  any effects 
related to aerosol maturation, they varied the distance between the holding chamber and the 
impactor by using different lengths of connecting tubing (Martin and Finlay, 2005).  They found 
that increasing the RH from 8% to near 100% resulted in significant increases in holding 
chamber deposition and MMAD for a conventional formulation containing ethanol and 
surfactant as well as for an excipient-free formulation.  Furthermore, in humidified air the 
MMAD was observed to decrease significantly as the spacing tubing length was increased.  
Martin and Finlay’s results suggest that significant condensational growth of pMDI drug 
particles occurs at high air relative humidity, and that this growth is followed by secondary 
evaporation of the condensed water.  This idea is consistent with the prior results: if the aerosol 
is given sufficient time to mature (as with the large volume evaporation chamber of Kim et al. or 
the low sampling flow rate employed by Lange and Finlay), any transient size increases will be 
undetectable by typical particle sizing techniques, as secondary evaporation will have taken 
place prior to sizing.  On the other hand, if the sizing occurs while condensational size changes 
are still underway (as with the studies of Mitchell et al. and Martin and Finlay), the measured 
aerodynamic particle size distribution will depend on how far along the aerosol maturation 
process has progressed.  Thus, although condensational growth and secondary evaporation of 
pMDI-generated aerosols have not been observed directly, the available research provides 
indirect evidence that these phenomena do indeed occur. 

Recently, researchers studying solution pMDIs have focused attention on particle properties 
other than the aerodynamic particle size distribution.  Notably, the solid phase and the particle 
morphology become important after particle deposition in the airways (de Souza Carvalho et al., 
2014), as they may affect particle wettability, dissolution rate, and susceptibility to the lungs’ 
particle clearance mechanisms (Ruge et al., 2013).  The solid phase of inhaled drugs has been 
shown to affect pharmacokinetics and pharmacodynamics in animal models (Sakagami et al., 
2002; Sakagami et al., 2001).  This is a relevant consideration since unlike in suspension 
formulations, the drug in a solution pMDI undergoes a rapid transition from a solute to a solid 
during dosing, with the resultant solid phase potentially dependent on the formulation and usage 
environment. Therefore, some recent research has evaluated the effects of formulation variables 
(ethanol content, presence of excipients) on the solid phase and the resultant dissolution and 
transport characteristics of the drug particles.  Grainger and colleagues evaluated two 
commercially available BDP pMDIs, distinguished by ethanol content and use of the excipient 
glycerol (Grainger et al., 2012).  They found that the glycerol-containing formulation differed 
significantly from the glycerol-free formulation in its extent of crystallinity, dissolution rate, and 
in vitro transcellular absorption.  Similar findings were reported in work by Lewis, Haghi, and 
colleagues (Haghi et al., 2014; Lewis et al., 2014).  Further studies with BDP solution pMDIs 
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(Buttini et al., 2014) and with model propellant systems (Bouhroum et al., 2010; Ooi et al., 2014) 
indicate that BDP may form solvates or clathrates with ethanol or propellants during drug 
particle formation. 

The morphology of a drug particle may alter its fate after deposition in the lungs as well.  
Specifically, particle density (Tsapis et al., 2002) and wettability (Schürch et al., 1990)  have the 
potential to affect the rate of particle dissolution or clearance in the airways.  Zhu et al. 
investigated the effect of ethanol content on the morphology of particles generated from 
budesonide solution pMDIs (Zhu et al., 2013).  Utilizing field emission scanning electron 
microscopy (FE-SEM) and focused ion beam milling-scanning electron microscopy (FIB-SEM), 
they found that ethanol content had a large effect on the particle morphology.  Particles produced 
from pMDIs with a low ethanol content tended to have an irregular envelope shape and a porous 
morphology, while those produced from pMDIs with more ethanol were generally smooth, solid, 
and spheroidal.  In a subsequent study, similar morphological transitions related to ethanol 
content were observed for both BDP and fluticasone propionate solution pMDIs (Zhu et al., 
2014).  Porous BDP particles have also been observed by other researchers (Buttini et al., 2014; 
Grainger et al., 2012; Lewis et al., 2014).  In the present study, we build on these findings by 
investigating the effect of propellant type and air humidity on the morphology and solid phase of 
the particles produced by BDP solution pMDIs. 

3. Materials and Methods 

3.1. pMDI Filling and Particle Sampling 

BDP solution pMDIs were prepared by first weighing out and dissolving beclomethasone 
dipropionate (Chiesi Farmaceutici, Parma, Italy) in anhydrous reagent grade ethanol.  The 
resulting concentrated solutions were added to 19 mL aluminum aerosol canisters with a 
fluoropolymer internal coating (Presspart Ltd, Blackburn, UK).  Canisters were capped with 50 
µL metering valves (BK357, Bespak Ltd, Kings Lynn, UK) and then crimped and filled with a 
metered volume of propellant using a lab-scale aerosol container crimper-filler (Lab Plant, 
Pamasol AG, Pfäffikon, Switzerland). Each inhaler was filled to a target solution volume of 10 
mL with a target BDP concentration of 2 mg/mL and paired with a polymer actuator with a 
nominal actuator orifice diameter of 0.30 mm (Presspart Ltd, Blackburn, UK).  Both HFA 
propellants p134a (Linde, Mississauga, Canada) and p227ea (Mexichem Fluor, Runcorn, UK) 
were assessed.  Formulations are summarized in Table 1. 
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end.  A USP induction port (USP, 2013) was fitted at the other end.  The downstream end of the 
USP induction port was coupled to a custom, single nozzle, single stage impactor (Wang, 2015) 
configured with a nozzle diameter of 0.6 mm, a nozzle-to-collection-plate distance of 2.5 mm, 
and a calculated cut size of 0.6 µm at a nominal flow rate of 1.0 SLPM.  The impactor utilized 
standard 12.7 mm diameter ultramicroscopy pin mounts (Ted Pella, Redding, CA, USA) as 
removable collection plates.  Samples for ultramicroscopy were collected onto double-sided 
adhesive conductive carbon tabs (Ted Pella, Redding, CA, USA) affixed to pin mounts; samples 
for spectroscopy were collected onto bare aluminum pin mounts that had been cleaned by double 
washes in reagent grade acetone and methanol.  The sampling flow rate was set by means of a 
needle valve and monitored with a gas mass flow meter (Model 4043, TSI, Shoreview, MN, 
USA); it was maintained at 1.00 ± 0.05 SLPM for all tests.  For each sample collection, a single 
priming shot was fired into a waste flask and then 5-10 shots from the pMDI were administered 
into the evaporation chamber, with a pause of approximately one second between each shot.  
Then a 10 ± 1 second holding period to allow aerosol maturation was followed by 5 minutes of  
aerosol sampling.  Given the multitude of actuations, the length of the sampling period, and the 
cut size of the impactor, the sampled fraction was expected to be adequately representative of the 
entire aerosol. After the sampling period, the impactor was disassembled and particle-laden pin 
mounts were transferred to a specimen box with a desiccant sachet to await analysis.  The USP 
induction port and the impactor components were cleaned with ethanol and lint-free wipes 
between every measurement.  

3.2. BDP Particle Morphology by FE-SEM, FIB-HIM 

Samples were coated in gold by sputter deposition (Desk II, Denton Vacuum, Moorestown, 
NJ, USA) for 120 seconds at 15-20 mA current, resulting in a coating thickness of approximately 
20 nm.  Samples were imaged using FE-SEM (Sigma FE-SEM, Zeiss, Jena, Germany) with an 
accelerating voltage of 3-5 kV and a 30 µm lens aperture.  Secondary electrons were detected 
with the out-of-lens detector.  Selected samples were also analyzed using focused gallium ion 
beam milling and helium ion microscopy (Ga-FIB-HIM) (Orion NanoFab, Zeiss, Jena, 
Germany).  Particles were sectioned with a gallium ion beam (30 kV accelerating voltage, 50 pA 
beam current, 40 µm aperture) and then imaged by helium beam (30 kV accelerating voltage, 1 
pA beam current).  Analysis of Ga-FIB-HIM micrographs was conducted with image analysis 
software (ImageJ, NIH, Bethesda, MD, USA). 

3.3. BDP Solid Phase by Raman Microscopy 

Due to the small sample mass contained in each dose, Raman microscopy was selected to 
assess the solid phase of BDP pMDI samples.  This allowed preparation of samples with 
adequate Raman signal while consuming only 5-10 shots from each inhaler.  Samples were 
analyzed by placing particle-laden pin mounts directly onto the stage of a Raman microscope 
(inVia, Renishaw, Prospect Scientific, Ontario, Canada). An argon ion laser with a 514.5 nm 
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whereas the present study conclusively demonstrates that absent sufficient air humidity, no pores 
are formed in particles from BDP solution pMDIs regardless of formulation variables.  In this 
study, we demonstrate that sufficiently humid air is a necessary condition for pore formation.  
The effect of ethanol content reported by Zhu et al. is likely due to ethanol’s effect on   as 
demonstrated in this work.  Increasing ethanol content has been shown to slow propellant 
evaporation (Stein and Myrdal, 2006), which will tend to reduce evaporative cooling and 
generally increase the temperature of the pMDI spray plume.  Therefore the degree of water 
vapor saturation achieved as parcels of entrained air are cooled will decrease as spray plume 
temperature increases.  Thus the temperature and humidity of the air entrained into the pMDI 
spray plume and the temperature field within the spray plume itself largely determine whether 
water vapor saturation and subsequent morphology modification might occur.   

These effects are illustrated conceptually in Figure 9. The dew point temperature—that is, 
the temperature at which the water vapor in air reaches saturation when cooled at constant 
pressure (Van Wylen and Sonntag, 1965)—of air at 20 °C and 101.3 kPa absolute pressure  is 
plotted against the air relative humidity  using a simple model (Buck, 1981).  As an illustrative 
example, the value of  determined for pMDI 134_18 (16 ± 1 %) defines the center of a 
transition RH range wherein particle formation may occur either above or below the dew point 
temperature and thus below or above water vapor saturation.   A transition range is expected 
rather than an abrupt transition because the temperature of pMDI spray plumes vary in time and 
space (Oliveira et al., 2013); this likely explains the observation of a mixed population of particle 
morphologies at .   The intersection of this RH range with the dew point curve corresponds 
to a range of spray plume temperatures.  Since pMDI spray plume temperatures are affected by 
formulation and device variables (Brambilla et al., 2011), the position and breadth of the 
transition RH region and the spray plume transition temperature region may respond to changes 
in formulation or device.  Increasing ethanol content is expected to increase the spray plume 
temperature, which can be visualized on Figure 9 as an upward shift in the transition temperature 
range.  This is expected to shift the transition RH region to the right and increase , as was 
observed in this study.  

The dew point temperatures corresponding to the observed values of  in Table 2 are all 
less than 0 °C.  At these temperatures, the degree of saturation with respect to the ice phase is 
greater than with respect to the water phase (Hobbs, 1974).  It is therefore impossible to say 
whether the pore formers are liquid water droplets or ice crystals without additional experimental 
work.   Either scenario is possible given the low aqueous solubility of BDP (Sakagami et al., 
2002) and the complexities of  nucleated water condensation or ice deposition from the vapor 
phase (Hoose and Möhler, 2012). Regardless of the exact mechanism of pore formation, porosity 
in inhaled BDP microparticles  alters both the particle density (Edwards et al., 1997) and the 
wettability via contact angle modification (Israelachvili, 2011).  Therefore the fate of a porous 
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aerodynamic properties (Tsapis et al., 2002), low cohesive forces (Tarara et al., 2000), and 
excellent colloidal stability in suspension (Tarara et al., 2004) .  However, producing such 
particles typically requires complicated formulation or processing techniques.  Here, we 
produced porous microparticles with a relatively straightforward formulation and spray 
evaporation process, albeit at a very small scale. 
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