Understanding the dispersibility enhancement of L-leucine in the spray drying of inhalable microparticles
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Introduction

= Dispersibility enhancers are used during spray drying to decrease
interparticle cohesion and adhesion with the device components.

= L-leucine is one of the dispersibility enhancers currently in clinical
development?.

= |t is surface-active and crystallizes during spray drying?.

= The underlying mechanisms of shell formation of leucine during spray
drying is not understood fully.

= These facts complicate the use of conventional particle formation
theories in predicting the surface enrichment of leucine-containing
particles and their solid phase.




Methods — Drying of Leucine and Trehalose Particles
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Monodisperse Particles — Increase in Leucine Fraction Results in Lower Density Particles Due to Earlier Shell Formation
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The 10 pum scale bar corresponds to all figures but the insets for which
separate scale bars are provided.



Spray-Dried Powders — Smaller Particles Have Less Leucine on the Surface
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Hypothesis:

Small particles are amorphous with minimum surface
enrichment of leucine.




Model — The Particle Formation Model Can Predict the Size-Dependency

Leucine is expected to undergo instantaneous nucleation
upon reaching a supersaturation ratio of ~3.53.

~
= = Trehalose is expected to begin its glass formation process
~— upon reaching a concentration of ~830 mg/mL2.
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Larger tctrenh — tnleu — more leucine on the surface, higher leucine crystallinity
Smaller t¢ treh — tnleu — less leucine on the surface, lower leucine crystallinity 6




Conclusions

= Leucine acts as a dispersibility enhancer mostly by making a rugose

crystalline shell on the particle surface*. [, Droplet Formation (atomization)

= Leucine-containing particles cannot be designed according to a simple

. o [, Saturation is reached
formulation composition rule. |

= Not given enough time for crystallization, some of the leucine . e
] ] ) ] f. Nucleation starts -
molecules in the particles would make a co-amorphous mixture with
the other glass formers.

= This can be predicted with the proposed particle formation model. Further nucleation and growth

[. Shell formation
(decrease in evaporation rate)

[, Droplet lifetime assuming constant evaporation rate

{,, Final dried particle 0

Y

* Low quantities of leucine in amorphous phase can still lower the surface energy, hence Suspected shell formation
increase the dispersibility, of particles due to its surface-activity (not studied here). mechanism for leucine 7
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